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Abstract: The integration of the brain-machine interface (BMI) and the exoskeleton technique
has the potential to promote the understanding of fundamental principles in neural control of
movement, as well as to motivate a new generation of rehabilitation or power augmentation
exoskeleton systems. In this paper, the kinematic design and development of a 6-DOF upper
limb exoskeleton for a BMI study is presented. In order to achieve a singularity-free design of
the shoulder complex, a 4-DOF shoulder complex model is proposed using one redundant DOF
in contrast to the commonly used orthogonal triad model. The feasibility of both singularity
and joint limit avoidance control is investigated based on the reachability analysis.
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1. INTRODUCTION

Paralysis caused by damage to the nervous system affects
about 5.6 million people in the U.S. (Christopher & Dana
Reeve Foundation, 2009) by eliminating or weakening con-
trol of parts of the body. Loss or difficulty of upper-limb
mobility is one of its major effects. Since the introduction
of the brain-machine interface (BMI), a direct pathway en-
abling communication between the brain and an external
apparatus, researchers have been putting tremendous ef-
forts into finding ways to enable paralyzed people to move
a prosthetic device with their mind. In upper extremity re-
habilitation, most of the existing therapy robots are either
end-effector-based or exoskeleton devices (Nef and Riener,
2008). Since end-effector-based robots generally interact
with patients only through one point (the end-effector),
it fails in fully determining the arm postures and the in-
teraction torques of each joint. The wearable exoskeleton,
in spite of more complicated mechanical structure and
system dynamics, has multiple contact points with the
body, allowing both applying control to and getting feed-
back from each joint. The integration of BMI study and
exoskeleton technique is a promising direction of future
prosthetic devices. This innovation has the potential to
promote human’s understanding of fundamental principles
in the neural control of movement in scenarios involving
physical interactions with the world, as well as to motivate
new generation of rehabilitation or power augmentation
exoskeleton systems.

This paper presents the development of a 6-DOF passive
exoskeleton design for the joint motion data acquisition
from a BMI macaque. It shares the common design dif-
ficulties with those designed for humans. Apart from the
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hand, the anatomy of the shoulder complex is the most
difficult part to model for an upper limb exoskeleton. The
shoulder complex consists of four joints that function in a
precise and coordinated manner: the sternoclavicular (SC)
joint, the acromioclavicular (AC) joint, the glenohumeral
(GH) joint, and the scapulothoracic (ST) joint (Peat,
1986). The GH joint is the main joint of the shoulder and
is usually referred to as the shoulder joint. It has three
degrees of freedom (DOF), and is commonly described
by a “ball-and-socket” model. Three revolute joints are
used in Johnson et al. (2001); Tsagarakis and Caldwell
(2003); Martinez et al. (2008) to model the GH joint. This
orthogonal triad model (denoted as “GH3-I”), however,
has an inherent singularity problem when the first and
the third axes align with one another. To reduce the oc-
currence of singularities, some researchers chose to put the
singularities out of the prescribed workspace by optimizing
the relative angles between the three axes (Ball et al., 2007;
Letier et al., 2008) (denoted as “GH3-II”), or in the di-
rections that are anthropometrically hard to reach (Perry
et al., 2007) (denoted as “GH3-III”). In order to solve the
singular problem arising with the inherent singular nature
of an orthogonal triad, a 4-DOF GH model (denoted as
“GH4”) is proposed in this paper. By introducing an extra
DOF, the system complexity is increased. A kinematically
redundant mechanism, however, has more flexibility for
positioning and trajectory tracking due to its possession
of more DOFs than required.

The reason why the singularity issue is of great concern is
that the proposed exoskeleton will be used by macaques,
which are much less cooperative than humans. During the
BMI manual control, the macaque is assumed to be able
to move freely in its range of motion (ROM) with the
exoskeleton passively collecting the motion data. Both the
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macaque’s safety and its ROM should be guaranteed by
avoiding the singularities in the whole workspace.

The exoskeleton design presented in this paper is a non-
motorized prototype to verify the feasibility of the pro-
posed upper limb model. The proposed modeling and
mechanical design are described in Section 2 based on
the discussion on the upper limb model and the design
requirements. Kinematic analysis of the proposed 4-DOF
shoulder complex model is conducted in Section 3 in terms
of the model’s joint limits, singularity, and manipulability.
The feasibility of implementing singularity and joint limit
avoidance control for the actuated version of this model is
analyzed in Section 4 based on the backward reachability
study. The conclusion is given in Section 5.

2. SYSTEM DESIGN

2.1 Upper Limb Model

The functionality of the primate upper limb is determined
by the shoulder complex, elbow, wrist, and the hand,
performing multiple integrated spheres of action (Bowker,
1992). The shoulder complex is a highly-coupled mecha-
nism of great complexity due to its possession of 3 DOFs
in each of the SC, AC, GH, and ST joints. A 5-DOF
mathematical model of the shoulder complex is introduced
in Yang et al. (2005), including three rotational DOFs and
two translational DOFs, with the thorax as the fixed base.

In order to simplify the system modeling and design in the
engineering world, mostly the GH joint is modeled for the
shoulder complex as a ball-and-socket joint model which
consists of three rotational DOFs, as shown in Fig. 1(a).
Two conventions of describing the rotation sequence are
mainly adopted in the biomechanics community, and they
both work in the way of using a triad with two orthogonal
axis pairs to represent the GH joint. Fig. 2(a) shows a
most commonly used convention of “flexion-abduction-
rotation” (denoted as “Convention A”) inherited from
the clinical terms and thus has the functional anatomical
meaning. The convention of “azimuth-elevation-roll” (de-
noted as “Convention B”) depicted in Fig. 2(b) is more of
a mathematical way of describing spherical coordinates.
Since azimuthal rotation occurs with respect to a fixed
vertical axis and elevation/depression takes place about
the horizontal plane, this coordinate definition is easier
to visualize (Romilly et al., 1994). Some research groups
have also taken two translational DOFs into consideration.
Mihelj et al. (2007) added one extra prismatic joint to
assist shoulder elevation/depression, and Ball et al. (2007)
managed to include both shoulder elevation/depression
and protraction/retraction at the cost of more system
complexity.

The elbow joint is commonly modeled using a single-
axis hinge joint as shown in Fig. 1(b). The effect of the
angular variations between the hinge joint axis and the
forearm pronosupination axis during full elbow flexion
and full extension is also discussed in Perry et al. (2007).
Although the inclusion of an oblique angle from the elbow
flexion-extension axis to both the upper and the lower arm
segments can account for a more accurate elbow model,
a perpendicular relation with no hinge offset is usually
utilized for simplicity.

(a) GH joint

(b) Elbow joint (c) Radius-ulna 

joint

Fig. 1. Mechanical models of the upper limb joints.

Azimuth

GH center

Elevation/

depression

Roll

GH center

Flex./extension

Abd./

adduction

Int./external rotation

(a) Convention A (b) Convention B

Fig. 2. Two rotation conventions for GH joint model.

Fig. 1(c) shows a pivot joint representation of the radioul-
nar articulation corresponding to pronosupination of the
forearm. This DOF can be included either to the elbow or
to the wrist.

In our BMI study it is assumed that the macaque is
allowed to freely use its hand to grasp targets without
the exoskeleton components on the wrist or the hand.
Thus wrist and hand motions and their modeling are not
investigated in this paper.

2.2 Design Requirements

Compared with an exoskeleton designed for humans, a
compact design is of more importance for an exoskeleton
to be worn by the macaques due to their relatively small
body sizes. Since the ROM of macaques is not available in
existing literatures, human’s ROM for activities of daily
living (ADL) is referenced when designing the exoskele-
ton’s mechanical limits. Human’s maximum physiologi-
cal ROM and ADL ROM are respectively listed in the
third and the fourth columns of Table 1 (averaged from
Cott and Kinkade (1972); Perry et al. (2007); Ergin and
Patoglu (2012)), and are assumed to be sufficient to cover
the ROM of macaques. Besides, it is assumed that the
shoulder elevation/depression and protraction/retraction
of the macaques are not evident during their upper limb
movement. Thus for simplicity, these two translational
DOFs of the shoulder complex are not considered here.

In terms of manipulability of the mechanism, a singularity-
free design is desired to both maximize the macaques’
workspace and guarantee their safety. Although the safety
issue is not involved in a fully passive mechanism, it will
be a great concern for the future motorized exoskeleton
design. The manipulability and singularity will be further
discussed in Section 3.
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Table 1. Human’s ROM and the designed me-
chanical limits.

Joint Motion Phy. ROM ADL ROM Mech. Limit

1 azi. add. – 140◦ 140.5◦

azi. abd. – 30◦ 50.5◦

2 shld. add. 134◦ 130◦ 138.3◦

shld. abd. 48◦ 15◦ 138.3◦

3 shld. flx. 188◦ 80◦ 188.1◦

shld. ext. 61◦ 30◦ 8.1◦

4 shld. int. 97◦ 70◦ 80.0◦

shld. ext. 90◦ 80◦ 80.0◦

5 elbw. flx. 142◦ 140◦ 88.7◦

elbw. ext. 0◦ 0◦ 8.1◦

6 pron. 77◦ 65◦ 80.0◦

supi. 113◦ 70◦ 80.0◦

z5

z4

z6

x3

x6

x4, x5

x2

x0, x1

z1

z2

z0

O0~O3

O4, O5

O6

z3

Shoulder 

Complex

Joint 1

Joint 2Joint 3

Joint 4

Joint 5

Elbow

Joint 6 Radioulnar

Joint

y0

Fig. 3. Left: CAD model with coordinate frames. Middle:
Simplified joint model. Right: Physical hardware de-
sign implementation.

2.3 Mechanical Design

Here we propose a 6-DOF model of the macaque’s upper
limb with each DOF represented by a single-axis revo-
lute joint as shown in Fig. 3. Four DOFs are assigned
to the shoulder complex with Joint 1 corresponding to
azimuthal rotation, Joint 2 abduction/adduction, Joint 3
flexion/extension, and Joint 4 internal/external rotation.
These four revolute joints together form a spherical joint
model of the shoulder complex intersecting at a point
representing the center of the GH joint. The elbow joint
and the radioulnar joint are each modeled by one DOF
labeled as Joint 5 and Joint 6, respectively.

The prosthetic joints of this wearable upper limb exoskele-
ton can be classified into two types: rotation axis being
perpendicular to the arm segments (Type I), and rotation
axis being along the longitude of the arm segments (Type
II). In our proposed design (Fig. 3), Joint 1, 2, 3, and 5
are of Type I. Fig. 4(a) shows the design example of Joint
2. Joint 4 and 6 are of Type II (Fig. 4(b)), and designs
involving a curved guide rail are most commonly used to
construct this mechanism (Mihelj et al., 2006; Perry et al.,
2007). In our design, Joint 4 and Joint 6 utilize the same
mechanism. A cuff with 1/3 circle opening is used for the
macaques to put on. A curved guide rail with a timing
belt and a sliding roller with the corresponding pulley are

Set screw

Encoder

Linkage

Bearing

Mounting 

bracket

Screw

(a) Joint Type I

Nuts

Roller

Bearing

Standoff

Pulley

Bearing

Roller

Encoder

Threaded rod

Bearing

Cuff

Curved rail

Timing belt

(b) Joint Type II

Fig. 4. CAD design of two types of joints.

mounted on the cuff to transmit the upper/lower arm’s
rotation movement to the sensors. Two commercial braces
are used to firmly attach the arm to the cuff with Velcro.

The designed mechanical limits for these six joints are
listed in the last column of Table 1. Compared with
the human ADL ROM, most of the mechanical joint
limits meet the design requirements. In fact, in our BMI
study, the macaque’s working space is prescribed as always
in front of its coronal plane and the macaque’s task
does not involve elbow flexion of over 90◦. Thus, the
designed shoulder extension and the elbow flexion limits
are sufficient even though they are smaller than those of
ADL ROM. In other words, this proposed design can cover
most of the human’s ROM, which is much more than
required for the macaque’s workspace in this BMI study.

3. KINEMATIC ANALYSIS

3.1 System Kinematic Model

Forward Kinematics Forward kinematics defines the
subject’s wrist position and orientation in the base frame
as a function of the joint variables. The wrist position
vector p0 and the orientation vectors (n0, s0,a0) can
be obtained by calculating the coordinate transformation
matrix T 0

6 (θ) describing the wrist Frame 6 with respect to
the base Frame 0

T 0
6 (θ) = A0

1A
1
2A

2
3A

3
4A

4
5A

5
6 =

[

n0 s0 a0 p0

0 0 0 1

]

(1)

where θ = [ θ1 θ2 θ3 θ4 θ5 θ6 ]
T

denotes the joint space

angles, and Ai−1
i is the transformation matrix from Frame

i to Frame i− 1. The frame definition shown in Fig. 3 fol-
lows the Denavit-Hartenberg (DH) parameter convention.

Jacobian Matrix A linear mapping between the task
space velocity ve and the joint space velocity θ̇ can be
established via the Jacobian matrix as

ve = J(θ)θ̇ (2)

where ve = [ ṗT
e ωT

e ]T and J(θ) = [ Jp(θ)
T Jo(θ)

T ]T.
The end point linear velocity ṗe and the angular velocity
ωe can be then expressed as

ṗe = Jp(θ)θ̇, ωe = Jo(θ)θ̇ (3)

3.2 Workspace and Joint Limits

Workspace is the region described by the origin of the
end-effector frame when all the joints execute all possible
motions (Siciliano et al., 2009). The workspace of the pro-
posed 6-DOF upper limb exoskeleton is fully determined
by the mechanical limits listed in Table 1. For a motorized
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device, the joint limits need to be avoided to guarantee
system’s performance.

3.3 Singularity Analysis

The Jacobian matrix is a function of the joint space con-
figuration θ, and those configurations at which J(θ) is
rank-deficient are termed kinematic singularities (Siciliano
et al., 2009). For any mechanism that uses a series of
revolute joints to mimic the ball-and-socket joint, sin-
gularities always exist. When singularity occurs, at least
one DOF of rotation is lost, and the mechanism cannot
move arbitrarily, which is highly undesirable for a motion
tracking system. Meanwhile, in the vicinity of a singularity
for a motorized design, small desired velocities in the task
space will require very large joint motions if the task space
velocities have components along the degenerated direc-
tions. These large joint motions may damage the motors
or even result in severe harm to the subjects. Thus the
singularity issue is emphasized here. Since the designs of
the elbow joint and the forearm rotation joint are following
the subject’s anatomical structure, the subject’s natural
actuation DOFs should be preserved at these two joints.
Thus, we are only interested in the motion realization by
the other four joints (the shoulder complex model), in par-
ticular, the singularity and joint limits avoidance of these
four joints. For this spherical shoulder complex model with
fixed upper arm length, the end point is moving on a
spherical surface. Thus the orientation Jacobian Jo(θ)

1

will be investigated, and can be expressed as

Jo(θ) =

[

0 −s1 c1s2 −c1c2s3 − s1c3
0 c1 s1s2 −s1c2s3 + c1c3
1 0 c2 s2s3

]

(4)

where si = sin(θi), and ci = cos(θi).

Using (4) we can find that the orientation Jacobian matrix
Jo(θ) will lose rank (i.e., singularity will occur) for the
following four cases:

(1) θ2 = −π, θ3 = 0, θ1 and θ4 are arbitrary;
(2) θ2 = −π, θ3 = π, θ1 and θ4 are arbitrary;
(3) θ2 = 0, θ3 = 0, θ1 and θ4 are arbitrary;
(4) θ2 = 0, θ3 = π, θ1 and θ4 are arbitrary.

Note that not all of these four configurations are the
actual singularities of this 4-DOF shoulder complex model.
The ranges of the first four joint angles 2 are listed in
Table 2 based on the mechanical limits and the ADL ROM
illustrated in Table 1. Thus among the aforementioned
four potential singularities, there is only one singular
configuration within the defined joint angle ranges, i.e.,
when θ2 = −π and θ3 = 0, corresponding to the situation
where Joint 1 is collinear with Joint 3, and Joint 2 is
collinear with Joint 4, respectively, as shown later in Fig. 7.

1 Hereafter, θ = [ θ1 θ2 θ3 θ4 ]T and Jo(θ) ∈ R3×4 due to the
emphasis on the 4-DOF shoulder complex model.
2 Note, angles in Table 1 are defined in the way commonly used in
the biomechanics world, while angles in Table 2 are defined following
the DH parameter convention in Fig. 3, with home position of θ1 = 0,
θ2 = −π/2, θ3 = π/2, and θ4 = 0.

Table 2. Ranges of the joint space angles.

Angle θ1 θ2 θ3 θ4
Range (◦) −50 ∼ 140 −228 ∼ −60 −98 ∼ 98 −80 ∼ 80

3.4 Manipulability Analysis

Compared with the commonly used 3-DOF shoulder com-
plex model, this proposed 4-DOF mechanism has the ad-
vantage of always being able to avoid its singular config-
uration by appropriately planning the trajectory with the
one redundant DOF. In order to quantitatively measure
the manipulating capability of the mechanism to arbi-
trarily change its position and orientation, the concept
manipulability is proposed by Yoshikawa (1985) as

cm(θ) =
√

det(J(θ)J(θ)T) (5)

and cm(θ) vanishes at the singular configurations.

In general, the manipulability of a mechanism is dependant
on its scale, number of joints, and the dimension of its task
space. In order to compare manipulabilities of different
manipulators working in different workspaces, Kim and
Khosla (1991) proposed the concept relative manipulability
which is independent of scales and dimension orders:

crel(θ) =

m

√

det(J(θ)J(θ)T)
√

n
∑

i=1

(a2i + d2i )

(6)

where n is the number of the joints, m is the dimension
order of the task space, and ai and di are the i-th link
length and the i-th joint offset defined in the DH parameter
convention, respectively.

As an example to demonstrate the advantage of the pro-
posed design, the manipulability distributions of the ro-
tational degrees of freedom on the task space horizontal
plane (i.e., the x0O0y0 plane defined in Fig. 3) are in-
vestigated for the following four models: the orthogonal
triad model “GH3-I” (IKO, Martinez et al. (2008)), the
triad models with rarely-reached singular direction “GH3-
II” ((CADEN)-7, Perry et al. (2007)), and with optimized
relative angles “GH3-III” (MEDARM, Ball et al. (2007)),
as well as our proposed “GH4” model. By setting the
upper arm segment as unit length, the denominator in (6)
equals to 1 for all of the four models regardless of the joint
number n. Besides, in this study, the task space dimension
order is the same (i.e., 3) for all four models and thus the
manipulabilities are comparable as long as we use the same
m for each model. Here we set m = 2 so as to be consistent
with the commonly used measure defined in (5). Therefore,
the manipulability of our GH4 model can be expressed as

cm,GH4(θ) =

√

det(Jo(θ)Jo(θ)
T)

=
√

s22 + s23 + s22c
2
3 + c22s

2
3 (7)

Fig. 5 plots the manipulability distributions of the four
models, and the color of the end point on the trajectory
represents the manipulability value at that particular
posture. For “GH3-III” and “GH4” in which the inverse
kinematic solutions are not unique, only the maximum
manipulability values of each end point on the horizontal
plane are plotted.
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(b) GH3-II ((CADEN)-7) model
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(c) GH3-III (MEDARM) model
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(d) The proposed GH4 model

Fig. 5. Manipulability distributions of four models on the
horizontal plane. (Macaque is plotted with its GH
joint center fixed and its elbow as the end point.)

Fig. 5(a) shows the manipulability plot of the GH3-I
model (IKO). It uses rotation Convention A with the
strict forward direction as its singular direction on the
horizontal plane. Each posture is uniquely determined
by one joint space realization due to its possession of
only three DOFs, which means singularities will always
occur in the vicinity of the strict forward direction and
one rotational DOF (either shoulder flexion/extension, or
abduction/adduction) will be lost.

Fig. 5(b) presents the manipulability distribution of the
GH3-II model ((CADEN)-7). This design is also an or-
thogonal triad model using the rotation Convention A.
But with the first joint axis having an acute angle about
the vertical direction, the singularity of this model was
designed in a direction that is rarely (statistically) reached
by the subject. Thus compared with GH3-I, there is no
“hard” singularities within the feasible workspace (in the
horizontal plane), and the average manipulability is im-
proved. However, singularities still exist in some other
regions of the workspace (outside the horizontal plane).
Therefore, it is still possible for the subject to enter the
vicinity of the singular region, resulting in limited feasible
workspace.

Fig. 5(c) plots the manipulability distribution of the GH3-
III model (MEDARM). It features the first two revolute
axes with an optimized angle rather than an orthogonal
relationship. By inclusion of an “azimuth” (not a full
azimuth) axis, the ROM on the horizontal plane is ex-
tended, though some regions are physically unable to reach
for a macaque. Besides, the not unique inverse kinematic
solutions lead to multiple joint space realizations (in each
direction on this plane). Thus it has more flexibility re-
garding the upper arm’s motion on the horizontal plane.
However, its average manipulability is relatively low due
to its lack of a dedicated internal/external rotation joint
for the upper arm.

Fig. 5(d) shows the manipulability distribution of our
proposed model with four DOFs combining both of the
two GH joint rotation conventions (Convention A and
B). From Fig. 5(a) to Fig. 5(d), the improvement of the
manipulabilities is evident. With an azimuth axis, this
model enjoys the similar multiple joint space realizations
as the MEDARM model on the horizontal plane. The
inclusion of a standard triad model (GH3-I) following the
azimuthal DOF makes it possible to obtain the maximal
manipulability value (

√
2) in all directions (i.e., the feasible

workspace is the whole horizontal plane). In fact, each
posture of the proposed GH4 model possesses different
levels of manipulabilities, and thus it is possible to avoid
the singular configuration by properly selecting the trajec-
tories.

4. FEASIBILITY OF SINGULARITY AND JOINT
LIMITS AVOIDANCE

Our ultimate goal is to design an actuated upper limb ex-
oskeleton with several control modes, to realize both pas-
sive data acquisition and active control of the macaque’s
upper limb motion for the BMI study. This actuated ex-
oskeleton may follow the structure of the current passive
version. Thus it is of interest to verify whether the designed
exoskeleton structure is able to avoid undesired workspace
(i.e., singularity and joint limits) when given the actuation
ability to follow the desired task space trajectory. This is
investigated in this section by doing a backward reachabil-
ity study.

4.1 Exoskeleton Control Task

As mentioned above, we are particularly interested in the
four shoulder complex joints which are essential to realize
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Fig. 6. Exoskeleton control structure.

3D orientation of the upper arm. Normally, the desired
task is given in the task space (i.e., task space orientation
Ωd and/or angular velocity ωd for the 4-DOF GH joint
exoskeleton). To achieve the desired task, the following
two control loops are typically utilized as shown in Fig. 6.

Kinematic Control The first control loop is the kine-
matic control loop which generates the desired joint space
trajectory (e.g., θd and θ̇d) from the desired task space
motion (e.g., Ωd and ωd). A simple first-order inverse
kinematic solution is given as (Bishop and Spong, 1998)

θ̇d = Jo
†(ωd +Koeo) + (I − Jo

†Jo)ϕN
(8)

where Jo
† = Jo

T (JoJo
T )−1 is the pseudo-inverse of Jo,

Ko is a positive definite matrix, (I −Jo
†Jo) is a projector

into the null space of Jo, and ϕ
N

is an arbitrary vector
to be designed. eo is the task space orientation error,
and the method to calculate eo is well documented in
Luh et al. (1980) and will not be detailed here. Note
that, (8) provides infinite solutions due to the redundant
exoskeleton design, whereas ϕN is the free variable to be
designed to shape the final inverse kinematic solution to
avoid reaching singularities and joint limits.

Dynamic Control The dynamic control loop is used
to control the exoskeleton joints to track the desired
joint space trajectory. Since this study focuses on the
kinematic control for singularity and joint limit avoidance,
the dynamic control loop is simplified by assuming

θ = θd (9)

In reality, this simplification is reasonable since the dy-
namic control bandwidth is generally much higher than
the kinematic control (Siciliano et al., 2009) and the
animal-exoskeleton system normally does not require fast
motions or rapid accelerations. This simplification will
greatly reduce the computation complexity of the following
reachability analysis (by reducing the state number of the
continuous dynamics).

4.2 Backward Reachability Analysis

As discussed above, the overall question becomes that,
given any task space motion, can we always find a proper
ϕ

N
to achieve the singularity and joint limit avoidance?

With the help ofMatlab Level Set Toolbox (Mitchell and
Templeton, 2005), this question can be answered by doing
a backward reachability study (Lygeros et al., 1999; Tomlin
et al., 2000). More specifically, we can define an unsafe set
to represent the vicinity of singularity and joint limits,
and then compute the backward time propagation from
this unsafe set. The converged set is then the reachable
set that may lead to the final unsafe set. This procedure
is detailed as follows.

Continuous Dynamics Due to the simplification of the
dynamic control loop (i.e., θ = θd and thus eo = 0), the
continuous dynamics essentially reduces to the kinematic
control equation (8) restated as

θ̇ = J†

o (θ)ωd +
[

I − J†

o (θ)Jo(θ)
]

ϕ
N
=: f(θ,u,d) (10)

where d = ωd ∈ D ⊂ R3 is the fictitious disturbance input
trying to bring the system to the unsafe set, and u = ϕ

N
∈

U ⊂ R4 is the control input to be designed to avoid the
unsafe set. The corresponding input constraints are simply
defined as hyper-rectangle, i.e., D = [−D,D] (D ≻ 0)
and U = [−U ,U ] (U ≻ 0), where “≻” means elementwise
greater than.

Hamilton-Jacobi PDE Let J(θ, t) : Rn → R denote the
level function l(θ) to be maximized by the control scheme
over time, and l(θ) is a scalar function characterizing
the “distance” from the unsafe region of the system. The
optimal solution to this kind of problem can be referred
to as a Stackelberg solution in a zero-sum dynamic game
(Basar and Olsder, 1999; Tomlin et al., 2000). If J(θ, t)
is continuously differentiable, it satisfies the following
Hamilton-Jacobi partial differential equation (PDE)

∂J∗

∂t
(θ, t) + min[0, H∗(θ,p)] = 0 (11)

J∗(θ, 0) = l(θ) (12)

where p = ∂J∗

∂θ
(θ, t), l(θ) is the level function to be

designed later, and the optimal Hamiltonian is

H∗(θ,p) =max
u∈U

min
d∈D

H(θ,p,u,d)

=max
u∈U

min
d∈D

pTf(θ,u,d)

=max
u∈U

min
d∈D

pT
[

J†

o (θ)d+
[

I − J†

o (θ)Jo(θ)
]

u
]

=−
3

∑

i=1

∣

∣

[

pTJ†

o (θ)
]

i

∣

∣Di

+

4
∑

i=1

∣

∣

[

pT
(

I − J†

o (θ)Jo(θ)
)]

i

∣

∣Ui (13)

where [•]i denotes the i-th entry of the vector [•]. Note
that, the control u and the disturbance d are decoupled
from each other in the Hamiltonian. Thus, the maximiza-
tion and the minimization can be conducted for each
individual variable separately.

To compute the backward reachable set of the system
state variables, the Level Set Toolbox also needs the upper
bound of ∂H∗

∂p
, which is essentially the upper bound of the

optimal system state trajectory θ̇ due to the optimality
condition θ̇ = ∂H∗

∂p
. By (10), the upper bound of the i-th

entry of this gradient can be obtained as follows

θ̇i(θ) =
[

J†

o (θ)d
]

i
+
[(

I − J†

o (θ)Jo(θ)
)

u
]

i

≤
∣

∣

[

J†

o (θ)d
]

i

∣

∣ +
∣

∣

[(

I − J†

o (θ)Jo(θ)
)

u
]

i

∣

∣

=

3
∑

j=1

∣

∣

∣

[

J†

o (θ)
]

ij

∣

∣

∣
Dj +

4
∑

j=1

∣

∣

∣

[

I − J†

o (θ)Jo(θ)
]

ij

∣

∣

∣
Uj ,

i = 1, 2, 3, 4. (14)

where [•]ij denotes the entry at the i-th row and the j-th
column of the matrix [•].
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Fig. 7. Singularity unsafe set at t=0sec (θ2 = −π, θ3 = 0).

Level Function Design Now we need to design proper
level functions to characterize the unsafe set for reacha-
bility study. Recall that we have two issues in this kine-
matic control problem, i.e., the singularity and the joint
limits. For singularity, the common metric used is the
manipulability defined in (7). After normalization, the
level function for singularity characterization is defined as

w1 = cm(θ)

cmax
m

(θ)
∈ [0, 1].

For the joint limit characterization, the metric can be
defined as

cl(θ) = 1− e
−k

4

Π
i=1

(θi−θimin)(θi max−θi)

(θi max−θimin)2

(15)

where θimin and θimax are the minimum and maximum
position limits for the i-th joint as defined in Table 1,
respectively. k is a scalar selected to make the maximum
value of cl at about 0.5. As expected, this cl becomes
smaller when θi approaches the corresponding joint limits.
Similarly, the normalized metric is utilized as the level
function to characterize the joint limit region, i.e., w2 =
cl(θ)

cmax

l
(θ)

∈ [0, 1].

In the following reachability study, we define the singu-
larity unsafe set as ∼ 5o from singular posture, which
gives w1 ≤ 0.0872. Similarly, define the joint limit unsafe
set as ∼ 2o from one joint limit while the other joints
are at their center points within the ranges, which gives
w2 ≤ 0.0553. To avoid these two unsafe sets, the control
objective becomes to maximize the time propagation of w1

and w2, i.e., J(θ, t).

4.3 Unsafe Set Computing Results

The backward reachability study for the above problem
formulation is coded using the Level Set Toolbox. The
unsafe sets are propagated backward in time for 10sec,
and the input bounds U and D are assigned based on
the realistic motion speed and control signal parameters.
In order to visualize the 4D unsafe set propagation, eight
3D slices along the fourth joint angle θ4 are created and
illustrated for each time instance (see Fig. 7 - Fig. 10).
Another visualization issue is that, the joint limits are on
the borders of the space (e.g., the unsafe set is outside the
cube of each 3D space in Fig. 9 and Fig. 10). This makes
the singularity unsafe set invisible inside the cube (safe
set). To deal with this problem, the two unsafe sets are
computed and visualized separately.

Fig. 8. Singularity unsafe set at t=−10sec.

Fig. 9. Joint limit safe set at t=0sec.

Fig. 10. Joint limit safe set at t=−10sec.

From Fig. 7 - Fig. 10, we can observe that both singularity
unsafe set and joint limit unsafe set are expanding over
time backward (i.e., red surfaces in Fig. 7 - Fig. 8 are
expanding, and cubes in Fig. 9 - Fig. 10 are shrinking).
Both unsafe sets converge to small invariant sets after
finite time. This implies that the final safe region is still
large, capable of achieving all 3D desired motion (this can
be confirmed by doing a similar capture set computation).
Thus, as long as we start from the safe region, there exists
a feasible control to achieve the desired motion without
reaching singularity or joint limits.

Recall that, in this problem, the disturbance d is the
desired task space motion ωd, which should be smooth
and continuously differentiable in practice. For this reach-
ability study, however, the disturbance is given too much
advantage by allowing bang-bang disturbance which is
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impossible in reality. As a result, the optimal Hamiltonian
is underestimated and the unsafe set is overestimated,
i.e., in practice it is more unlikely to reach the extreme
unsafe sets computed here. With this reachability study,
it is confirmed that the feasible solution to avoid reaching
singularity and joint limits exists with the control variable
us. This will provide a guidance for designing a practi-
cal kinematic controller based on these level functions to
achieve the desired objectives.

5. CONCLUSION

A 6-DOF macaque upper limb exoskeleton model with 4
DOFs at the shoulder complex was proposed for a BMI
study in this paper. With one redundant DOF assigned
to the shoulder complex, the kinematic analysis and the
backward reachability analysis study demonstrated the
feasibility for the proposed model to avoid both the singu-
larity and the joint limits. The non-motorized version of
the proposed model has been built. As an immediate future
work, the macaque motion data acquisition and system
calibration will be conducted to experimentally verify the
feasibility of the proposed upper limb exoskeleton design.
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